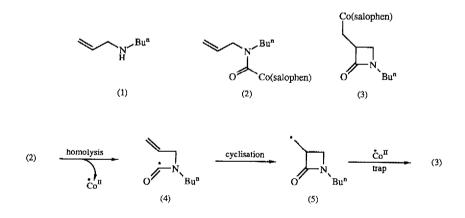
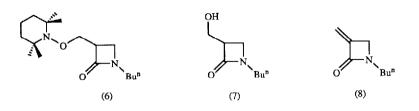
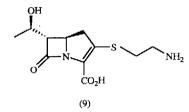

COBALT-MEDIATED REACTIONS. A NEW SYNTHETIC APPROACH TO $\beta\text{-}, \gamma\text{ - and }\delta\text{-LACTAMS}$

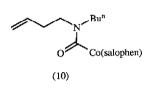

G. Bryon Gill, Gerald Pattenden^{*} and Stephen J. Reynolds Department of Chemistry, The University, Nottingham, NG7 2RD

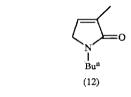
Summary: Unsaturated carbamylcobalt salophens, <u>e.g.</u> (2), undergo homolytic cleavage (Δ , sunlamp) producing carbamyl radicals, <u>viz</u> (4) which then undergo cyclisation, accompanied by trapping (with Co^{II} or TEMPO) or dehydrocobaltation, leading to functionalised β -, γ -, and δ -lactams <u>e.g</u>. (3), (6), (8), (11), (13) and (16).

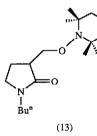
The β -lactam family of antibiotics has acquired a status of unparalleled importance and significance in chemotherapy in recent years.¹ It is not surprising therefore that this class of compound has attracted considerable attention from both the synthetic chemist, with regard to the design of new apporaches to β -lactams, and the medicinal chemist in the search for novel, more active analogues.² Although less well investigated, 5- and 6-membered lactams are also of interest, particularly those α -methylene derivatives³ which relate to the analogous and well-known naturally occurring anti-tumoral α -methylene- γ -butyrolactones.⁴ In recent studies of cobalt-mediated radical reactions we have demonstrated the facile homolytic cleavage of a range of alkyl and acyl cobalt salophen reagents, and the oxidative additions of the resulting carbon centred radicals to C+C double bonds.⁵ We now describe the extensions of this work to the synthesis of unsaturated carbamyl cobalt salophens, and the applications of these reagents in the synthesis of substituted β -lactams, and also 5- and 6-ring lactams (Scheme 1).

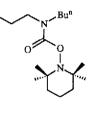


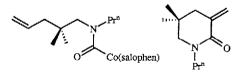

Thus, acylation of N-butyl-2-propenamine (1) with triphosgene (C_6H_6 , N_2 C_5H_5N , 48h) first produced the corresponding carbamyl choride,⁶ which was immediately reacted with sodium cobalt salophen reagent (THF, N_2 , dark)⁵ leading to the carbamyl cobalt salophen (2), as deep red crystals in 54% overall yield.⁷ Irradiation of a solution of the cobalt salophen (2) in methylene dichloride, using light from a conventional 300W sunlamp (N_2 , 48h), followed by work-up, chromatography and crystallisation, then led to the cobalt salophenmethyl substituted β -lactam (3) which was obtained as deep green crystals, m.p. 101°C (decomp), in 45% yield. The β -lactam (3) is produced from (2) by the now familiar sequence: (i) homolytic cleavage to the carbamyl radical (4), (ii) 4-exo-trig cyclisation, followed by (iii) trapping of the product radical centre (5) with Co^{II}; i.e. overall cyclisation accompanied by cobalt group transfer.⁵ When a solution of the β -lactam cobalt salophen (3) was subsequently heated under reflux in dry toluene in the presence of tetramethylpiperidine oxide (TEMPO, 2 equivs.), a 71% yield of the adduct (6) was produced, which on hydrogenolysis (10% Pd-C, MeOH) gave the α -hydroxymethyl substituted β -lactam (7).⁸


During some experiments involving thermolytic cleavage of (3) in the presence of TEMPO, we also isolated small amounts (~4%) of the α -methylene- β -lactam (8)⁹ in addition to (6). Usefully, when the carbamyl cobalt salophen (2) was heated in toluene alone, the product (8) of cyclisation followed by dehydrocobaltation was the main compound isolated (~25%). α -Methylene β -lactams have been prepared previously,¹⁰ and they are of considerable use as Michael acceptors in reactions with a variety of nucleophiles, leading to a range of useful 3-substituted β -lactams. The new and specific synthesis of 3-hydroxymethyl substituted β -lactams from carbamylcobalt salophens by the cyclisation-trapping methodology, summarised above, might have relevance in new approaches to thienamycin (9) and related important antibiotics.

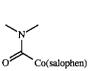

In parallel investigations, we have also studied the radical initiated cyclisations of 3-butenyl and 4-pentenyl substituted carbamyl cobalt salophens, viz (10) and (15), with a view to the synthesis of γ - and

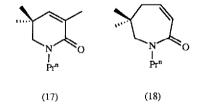


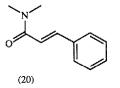

| Buⁿ (11)



(16)




(14)


(15)

(19)

 δ -lactams. Thus, when a red solution of the carbamylcobalt salophen (10) prepared from N-buty1-4-pentenamine, in toluene was heated under reflux for 50h, chromatography gave the α -methylene- γ -lactam (11) and the isomeric pyrrolidinone (12) products expected from 5-exo-trig cyclisation accompanied by dehydrocobaltation from (10), in a combined yield of 62%.¹¹ In addition. when (10) was irradiated in methylene dichloride in the presence of TEMPO, a satisfying 59% yield of the TEMPO-trapped cyclised material (13) was obtained, together with a 23% yield of the acylic adduct (14). A similar thermolysis of the 4-pentenyl substituted carbamylcobalt salophen (15) led to largely (16; 51%) and (17; 7%), but in this instance we were also able to isolate small amounts ($\sqrt{7}$) of the seven ring-lactam (18) resulting from 7-endo-trig cyclisation of (15).

The aforementioned oxidative cyclisations of terminal alkenyl substituted carbamylcobalt reagents can also be effected in an intermolecular sense using deactivated (electrophilic) $C \rightarrow C$ double bonds. Thus the carbamyl cobalt salophen (19) for example, reacts smoothly with styrene (10 equivs., Δ , $C_{c}H_{5}Me$) leading to the E-cinnamamide (20) in approximately 50-60% yield.

We thank the S.E.R.C. for a CASE award studentship (to S.J.R.), and Rhône-Poulenc for generous financial support.

References

- 1. For a recent review see: W.Dürckheimer, J.Blumbach, R.Lattrell and K.H.Scheunemann, Angew. Chem. Int. Edit. Engl., 1985, 24, 180. For a selected recent review see: A.G.M.Barrett and M.A.Sturgess,
- 2. Tetrahedron, 1988, 44, 18, 5615.
- For some synthetic approaches to γ- and δ-ring lactams see: D.L.Lee,
 C.J.Morrow and H.Rapoport, J. Org. Chem., 1974, 39, 893; M. Mori,
 Y.Washioka, T.Urayama, K.Yoshiura, K.Chiba and Y.Ban, J. Org. Chem., 1983,
 48, 4058; C.Belaud, C.Roussakis, Y.Letourneux, N.El Alami and
- J.Villieras, <u>Synth. Comm.</u>, 1985, <u>15</u>, 1233; 4. See: D.W.Knight 'Carboxylic Acids and Derivatives' in <u>General and</u> Synthetic Methods, The Royal Society of Chemistry, 1978-1988, Volumes 1-10.
- 5. For earlier work see: D.J.Coveney, V.F.Patel and G.Pattenden, Tetrahedron Lett., 1987, 28, 5949; H.Bhandal and G.Pattenden, J. Chem. Soc. Chem.
- Commun., 1988, 1110; G. Pattenden, Chem. Soc. Rev., 1988, 17, 361. 6. H.Eckert and B.Forster, Angew. Chem. Int. Edit. Engl., 1987, 26, 894. 7. Satisfactory spectroscopic data, together with microanalytical and/or mass
- spectroscopic data, were obtained for all new compounds. For other 3-hydroxymethyl-β-lactams see: M. Lang (Ciba-Geigy A.-G.) Eur. Pat. Appl. EP 125,207; Ciba-Geigy A.-G. Jpn. Kokai Tokkyo Koho JP 59, 181, 8.
- 254.
- H.Alper and N.Hamel, Tetrahedron Lett., 1987, 28, 3237. 9.
- See: S.R.Fletcher and I.T.Kay, J. Chem. Soc. Chem. Commun., 1978, 903;
 M.Mori, K.Chiba, M.Okita and Y.Ban, J. Chem. Soc. Chem. Commun., 1979, 698; M.Mori, K.Chiba, M.Okita, I.Kayo and Y.Ban, Tetrahedron, 1985, 41,
- 11. For a similar approach, but involving palladium-catalysis see: F.Henin, J.Muzart and J-P.Pete, Tetrahedron Lett., 1986, 27, 6339.

(Received in UK 20 April 1989)